将规则无缝整合到学习中(LFD)策略是启用AI代理的现实部署的关键要求。最近,信号时间逻辑(STL)已被证明是将规则作为时空约束的有效语言。这项工作使用蒙特卡洛树搜索(MCT)作为将STL规范集成到香草LFD策略中以提高约束满意度的一种手段。我们建议以STL鲁棒性值来增强MCT启发式,以使树的搜索偏向具有更高限制满意度的分支。虽然无域的方法可以应用于将STL规则在线整合到任何预训练的LFD算法中,但我们选择目标条件的生成对抗性模仿学习作为离线LFD策略。我们将提出的方法应用于规划轨迹的领域,用于在非较低机场周围的通用航空飞机。使用对现实世界数据进行训练的模拟器的结果显示了60%的性能比不使用STL启发式方法的基线LFD方法提高了性能。
translated by 谷歌翻译
检测和避免(DAA)功能对于无人飞机系统(UAS)的安全操作至关重要。本文介绍了Airtrack,这是一个仅实时视觉检测和跟踪框架,尊重SUAS系统的大小,重量和功率(交换)约束。鉴于遥远飞机的低信噪比(SNR),我们建议在深度学习框架中使用完整的分辨率图像,以对齐连续的图像以消除自我动态。然后,对齐的图像在级联的初级和次级分类器中下游使用,以改善多个指标的检测和跟踪性能。我们表明,Airtrack在亚马逊机载对象跟踪(AOT)数据集上胜过最先进的基线。多次现实世界的飞行测试与CESSNA 172与通用航空交通相互作用,并在受控的设置中朝着UAS飞向UAS的其他近碰撞飞行测试,该拟议方法满足了新引入的ASTM F3442/F3442M标准DAA标准。经验评估表明,我们的系统的概率超过900m,范围超过95%。视频可在https://youtu.be/h3ll_wjxjpw上找到。
translated by 谷歌翻译
With growing sophistication and volume of cyber attacks combined with complex network structures, it is becoming extremely difficult for security analysts to corroborate evidences to identify multistage campaigns on their network. This work develops HeAT (Heated Alert Triage): given a critical indicator of compromise (IoC), e.g., a severe IDS alert, HeAT produces a HeATed Attack Campaign (HAC) depicting the multistage activities that led up to the critical event. We define the concept of "Alert Episode Heat" to represent the analysts opinion of how much an event contributes to the attack campaign of the critical IoC given their knowledge of the network and security expertise. Leveraging a network-agnostic feature set, HeAT learns the essence of analyst's assessment of "HeAT" for a small set of IoC's, and applies the learned model to extract insightful attack campaigns for IoC's not seen before, even across networks by transferring what have been learned. We demonstrate the capabilities of HeAT with data collected in Collegiate Penetration Testing Competition (CPTC) and through collaboration with a real-world SOC. We developed HeAT-Gain metrics to demonstrate how analysts may assess and benefit from the extracted attack campaigns in comparison to common practices where IP addresses are used to corroborate evidences. Our results demonstrates the practical uses of HeAT by finding campaigns that span across diverse attack stages, remove a significant volume of irrelevant alerts, and achieve coherency to the analyst's original assessments.
translated by 谷歌翻译
To reproduce the success of text-to-image (T2I) generation, recent works in text-to-video (T2V) generation employ large-scale text-video dataset for fine-tuning. However, such paradigm is computationally expensive. Humans have the amazing ability to learn new visual concepts from just one single exemplar. We hereby study a new T2V generation problem$\unicode{x2014}$One-Shot Video Generation, where only a single text-video pair is presented for training an open-domain T2V generator. Intuitively, we propose to adapt the T2I diffusion model pretrained on massive image data for T2V generation. We make two key observations: 1) T2I models are able to generate images that align well with the verb terms; 2) extending T2I models to generate multiple images concurrently exhibits surprisingly good content consistency. To further learn continuous motion, we propose Tune-A-Video with a tailored Sparse-Causal Attention, which generates videos from text prompts via an efficient one-shot tuning of pretrained T2I diffusion models. Tune-A-Video is capable of producing temporally-coherent videos over various applications such as change of subject or background, attribute editing, style transfer, demonstrating the versatility and effectiveness of our method.
translated by 谷歌翻译
A self-supervised adaptive low-light video enhancement (SALVE) method is proposed in this work. SALVE first conducts an effective Retinex-based low-light image enhancement on a few key frames of an input low-light video. Next, it learns mappings from the low- to enhanced-light frames via Ridge regression. Finally, it uses these mappings to enhance the remaining frames in the input video. SALVE is a hybrid method that combines components from a traditional Retinex-based image enhancement method and a learning-based method. The former component leads to a robust solution which is easily adaptive to new real-world environments. The latter component offers a fast, computationally inexpensive and temporally consistent solution. We conduct extensive experiments to show the superior performance of SALVE. Our user study shows that 87% of participants prefer SALVE over prior work.
translated by 谷歌翻译
We propose a novel task, G4C (Goal-driven Guidance Generation in Grounded Communication), for studying goal-driven and grounded natural language interactions. Specifically, we choose Dungeons and Dragons (D&D) -- a role-playing game consisting of multiple player characters and a Dungeon Master (DM) who collaborate to achieve a set of goals that are beneficial to the players -- as a testbed for this task. Here, each of the player characters is a student, with their own personas and abilities, and the DM is the teacher, an arbitrator of the rules of the world and responsible for assisting and guiding the students towards a global goal. We propose a theory-of-mind-inspired methodology for training such a DM with reinforcement learning (RL), where a DM: (1) learns to predict how the players will react to its utterances using a dataset of D&D dialogue transcripts; and (2) uses this prediction as a reward function providing feedback on how effective these utterances are at guiding the players towards a goal. Human and automated evaluations show that a DM trained with RL to generate guidance by incorporating a theory-of-mind of the players significantly improves the players' ability to achieve goals grounded in their shared world.
translated by 谷歌翻译
Energy management systems (EMS) are becoming increasingly important in order to utilize the continuously growing curtailed renewable energy. Promising energy storage systems (ESS), such as batteries and green hydrogen should be employed to maximize the efficiency of energy stakeholders. However, optimal decision-making, i.e., planning the leveraging between different strategies, is confronted with the complexity and uncertainties of large-scale problems. Here, we propose a sophisticated deep reinforcement learning (DRL) methodology with a policy-based algorithm to realize the real-time optimal ESS planning under the curtailed renewable energy uncertainty. A quantitative performance comparison proved that the DRL agent outperforms the scenario-based stochastic optimization (SO) algorithm, even with a wide action and observation space. Owing to the uncertainty rejection capability of the DRL, we could confirm a robust performance, under a large uncertainty of the curtailed renewable energy, with a maximizing net profit and stable system. Action-mapping was performed for visually assessing the action taken by the DRL agent according to the state. The corresponding results confirmed that the DRL agent learns the way like what a human expert would do, suggesting reliable application of the proposed methodology.
translated by 谷歌翻译
Understanding the ambient scene is imperative for several applications such as autonomous driving and navigation. While obtaining real-world image data with per-pixel labels is challenging, existing accurate synthetic image datasets primarily focus on indoor spaces with fixed lighting and scene participants, thereby severely limiting their application to outdoor scenarios. In this work we introduce OmniHorizon, a synthetic dataset with 24,335 omnidirectional views comprising of a broad range of indoor and outdoor spaces consisting of buildings, streets, and diverse vegetation. Our dataset also accounts for dynamic scene components including lighting, different times of a day settings, pedestrians, and vehicles. Furthermore, we also demonstrate a learned synthetic-to-real cross-domain inference method for in-the-wild 3D scene depth and normal estimation method using our dataset. To this end, we propose UBotNet, an architecture based on a UNet and a Bottleneck Transformer, to estimate scene-consistent normals. We show that UBotNet achieves significantly improved depth accuracy (4.6%) and normal estimation (5.75%) compared to several existing networks such as U-Net with skip-connections. Finally, we demonstrate in-the-wild depth and normal estimation on real-world images with UBotNet trained purely on our OmniHorizon dataset, showing the promise of proposed dataset and network for scene understanding.
translated by 谷歌翻译
Medical treatments tailored to a patient's baseline characteristics hold the potential of improving patient outcomes while reducing negative side effects. Learning individualized treatment rules (ITRs) often requires aggregation of multiple datasets(sites); however, current ITR methodology does not take between-site heterogeneity into account, which can hurt model generalizability when deploying back to each site. To address this problem, we develop a method for individual-level meta-analysis of ITRs, which jointly learns site-specific ITRs while borrowing information about feature sign-coherency via a scientifically-motivated directionality principle. We also develop an adaptive procedure for model tuning, using information criteria tailored to the ITR learning problem. We study the proposed methods through numerical experiments to understand their performance under different levels of between-site heterogeneity and apply the methodology to estimate ITRs in a large multi-center database of electronic health records. This work extends several popular methodologies for estimating ITRs (A-learning, weighted learning) to the multiple-sites setting.
translated by 谷歌翻译
Segmentation of regions of interest (ROIs) for identifying abnormalities is a leading problem in medical imaging. Using Machine Learning (ML) for this problem generally requires manually annotated ground-truth segmentations, demanding extensive time and resources from radiologists. This work presents a novel weakly supervised approach that utilizes binary image-level labels, which are much simpler to acquire, to effectively segment anomalies in medical Magnetic Resonance (MR) images without ground truth annotations. We train a binary classifier using these labels and use it to derive seeds indicating regions likely and unlikely to contain tumors. These seeds are used to train a generative adversarial network (GAN) that converts cancerous images to healthy variants, which are then used in conjunction with the seeds to train a ML model that generates effective segmentations. This method produces segmentations that achieve Dice coefficients of 0.7903, 0.7868, and 0.7712 on the MICCAI Brain Tumor Segmentation (BraTS) 2020 dataset for the training, validation, and test cohorts respectively. We also propose a weakly supervised means of filtering the segmentations, removing a small subset of poorer segmentations to acquire a large subset of high quality segmentations. The proposed filtering further improves the Dice coefficients to up to 0.8374, 0.8232, and 0.8136 for training, validation, and test, respectively.
translated by 谷歌翻译